Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Roger D. Willett* and Firas F. Awwadi

Department of Chemistry, Washington State University, Pullman, WA 99164, USA

Correspondence e-mail: willett@mail.wsu.edu

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
Disorder in solvent or counterion
R factor $=0.059$
$w R$ factor $=0.139$
Data-to-parameter ratio $=11.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(propane-1,3-diamine)nickel(II) bis(tetrafluoroborate)

Abstract

The cationic components, $\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]^{2+}$, of the title compound $\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}$ or $\mathrm{Ni}(\mathrm{pn})_{3}\left(\mathrm{BF}_{4}\right)_{2}$ (pn is $1,3-$ diaminopropane), are stacked in the crystal via hydrogen bonding $(\mathrm{N}-\mathrm{H} \cdots \mathrm{F})$. The geometry around the $\mathrm{Ni}^{\mathrm{II}}$ atom is distorted octahedral, with an average $\mathrm{Ni}-\mathrm{N}$ bond distance of 2.14 (2) Å.

Comment

The title compound, (I), was obtained in attempt to prepare the analogous compounds $\left[\mathrm{Ni}(\mathrm{en})_{2} \mathrm{ClO}_{4}\right]\left(\mathrm{ClO}_{4}\right)$ and [$\left.\mathrm{Ni}(\mathrm{en})_{2} \mathrm{ClO}_{4}\right]\left(\mathrm{PF}_{6}\right)$ (en is ethylenediamine) (Landee et al., 1997). These compounds contain chains of nitrito-bridged nickel(II). These chains of $S=1$ ions exhibit antiferromagnetic exchange coupling (Meyer et al., 1982). Accordingly, they are ideal candidates for investigating the conjecture by Haldane that integer spin antiferromagnetic chains exhibit an energy gap between the nonmagnetic singlet ground state and the lowest lying excited state (Haldane, 1983).

(I)

In the title compound, the average $\mathrm{Ni}-\mathrm{N}$ bond distance is 2.14 (2) \AA, with $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ chelate bite angles ranging from 86.57 (18) to $88.6(2)^{\circ}$. Furthermore, the trans angles are different from the typical octahedral angle 174.2 (2)$179.0(2)^{\circ}$. The structure is different from the corresponding nitrate structure (Vezzosi et al., 1985). The three sixmembered rings are similar to each other, with chair conformations, as shown in Fig. 1. The $\mathrm{Ni}-\mathrm{N}-\mathrm{C}$ and $\mathrm{N}-\mathrm{C}-\mathrm{C}$ angles are close in value, with ranges of 120.5 (4)-123.6 (4) and 112.7 (6)-116.2 (6) ${ }^{\circ}$, respectively. The analogous nitrate structure shows a pronounced flattening in one of the sixmembered rings, as indicated by wider ranges of the above angles of 114 (1)-128 (1) and 113 (1)-127 (2) ${ }^{\circ}$, respectively. $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds stabilize the packing of the formula units in the crystal. The two tetrafluoroborate anions are disordered, as reflected by the large displacement ellipsoids of the F atoms.

Received 16 July 2002

Accepted 7 August 2002
Online 16 August 2002

Experimental

1,3-Diaminopropane (32.2 mmol) was added slowly to a solution of $\mathrm{Ni}\left(\mathrm{BF}_{4}\right)_{2} \quad(10.6 \mathrm{mmol})$ in water. To this solution, $\mathrm{Ni}\left(\mathrm{BF}_{4}\right)_{2}$ $(10.6 \mathrm{mmol})$ and $\mathrm{NaSCN}(10.6 \mathrm{mmol})$ were added. Slow evaporation lead to the formation of purple crystals.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}$
$M_{r}=454.72$
Orthorhombic, Pbca
$a=15.2751$ (14) \AA
$b=15.498$ (2) A
$c=16.835(2) \AA$
$V=3985.6(8) \AA^{3}$
$Z=8$
$D_{x}=1.516 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens $P 2_{1}$ diffractometer upgraded to $P 4$
ω scans
Absorption correction: ψ scan (XPREP in SHELXTL; Bruker, 1996)
$T_{\text {min }}=0.654, T_{\text {max }}=0.742$
4877 measured reflections
3503 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.139$
$S=1.00$
3503 reflections
311 parameters
H -atom parameters constrained
The two tetrafluoroborate anions were found to be disordered and were refined in sets (set 1: F1, F2, F3 and F4; set 2: F1', F2', F3' and F4'; set 3: F11, F12, F13 and F14; set 4: F11', F12', F13' and F14'). They were refined to partial occupancies of 0.571 (18), 0.429 (18), 0.533 (16) and 0.467 (16), respectively. The $\mathrm{B}-\mathrm{F}$ bond lengths of each tetrafluoroborate anion were restrained to the same value, and the $\mathrm{F} \cdots \mathrm{F}$ distances were restrained to be 1.633 times the corresponding $\mathrm{B}-\mathrm{F}$ bond lengths.

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1996); program(s) used to solve structure: $X S$ in $S H E L X T L$; program(s) used to refine

Figure 1
Drawing of the cationic component of (I), with 50% displacement ellipsoids.
structure: $X L$ in $S H E L X T L$; molecular graphics: $X P$ in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

This study was supported by ACS-PRF Grant 34779-AC5. The assistance of Dr James R. Jeitler in the preparation of the compound is appreciated

References

Bruker (1996). SHELXTL (XPREP, XCIF, XL, XP and XS; Version 5.10) and XSCANS (Version 2.20). Bruker AXS Inc. Madison, Wisconsin, USA. Haldane, F. D. (1983). Phys. Rev. Lett. 50, 1153-1156.
Landee, C. P., Bond, M. R., Willett, R. D. \& Reza, K. A. (1997). Phys. Rev. B, 56, 147-153.
Meyer, A., Gleizes, A., Girerd, J., Verdaguer, M. \& Kahn, O. (1982). Inorg. Chem. 21, 1729-1739.
Vezzosi, I., Benedetti, A. \& Saladini, M. (1985). Inorg. Chim. Acta, 97, 195199.

